New York: Scientists in the US have uncovered a new state of matter — a breakthrough that offers promise for increasing storage capabilities in electronic devices and enhancing quantum computing.
“Our research has succeeded in revealing experimental evidence for a new state of matter — topological superconductivity,” said Javad Shabani, an assistant professor at New York University in the US.
“This new topological state can be manipulated in ways that could both speed calculation in quantum computing and boost storage,” Shabani said.
The work, reported in a paper on pre-print repository arXiv, centers on quantum computing — a method that can make calculations at significantly faster rates than can conventional computing.
This is because conventional computers process digital bits in the form of 0s and 1s while quantum computers deploy quantum bits (qubits) to tabulate any value between 0 and 1, exponentially lifting the capacity and speed of data processing.
Shabani and his colleagues from the University of Buffalo and Wayne State University analysed a transition of quantum state from its conventional state to a new topological state, measuring the energy barrier between these states.
They supplemented this by directly measuring signature characteristics of this transition in the order parameter that governs the new topological superconductivity phase.
The team focused the inquiry on Majorana particles, which are their own antiparticles –substances with the same mass, but with the opposite physical charge.
Scientists see value in Majorana particles because of their potential to store quantum information in a special computation space where quantum information is protected from the environment noise.
However, there is no natural host material for these particles, also known as Majorana fermions.
As a result, researchers have sought to engineer platforms — ie, new forms of matter — on which these calculations could be conducted.
“The new discovery of topological superconductivity in a two-dimensional platform paves the way for building scalable topological qubits to not only store quantum information, but also to manipulate the quantum states that are free of error,” Shabani said. (PTI)